
RUHR-UNIVERSITÄT BOCHUM

Dirk Winkelhardt, Martin Eisenacher, Katrin Marcus, Julian Uszkoreit
Ruhr University Bochum, Medical Faculty, Medical Proteome Center

Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Medical Proteome Analysis

Abstract

Enhancements of MaCPepDB – the Mass Centric Peptide Database

Ruhr University Bochum

Medical Faculty

Medical Proteome Center

Medical Bioinformatics / Functional Proteomics

Center for Protein Diagnostics (PRODI)

Often challenged with small amounts of samples, researchers who want to run

targeted proteomic experiments like single-, multiple- and parallel reaction

monitoring (SRM, MRM and PRM) need to know their specific targets before

even measuring their samples once. Furthermore, it is important to know,

whether selected peptides are unique, at least for the species of interested.

To these lengths we developed MaCPepDB [1] (Mass Centric Peptide

Database). MaCPepDB contains the tryptic in silico digest of all known proteins

in UniProt KB, stored in an efficient manner to be quickly searched.

For the upcoming release of MaCPepDB we were able to increase the

performance and stabilize the response times with the help of modern

distributed database technologies, as a result the number of concurrent users

is improved. This performance gain allowed us to provide additional data for

each peptide. One of these improvements is a list of taxonomies for each

peptide, which highlights whether the peptide is unique or shared in each

respective species.

We are also developing additional tool based on MaCPepDB. An example is a

search engine, called MaxDecoy, which is able to perform spectrum

identifications against the complete UniProt KB in roughly 9 hours. Very

preliminary results are a shown below.

MaxDecoy: Improved spectrum identification 

with MaCPepDB
Performance improvements by Citus Data
The original MaCPepDB was build on a single server with 112 Cores, 754 GB

RAM and 3 consumer SSDs in a RAID 5. This setup quickly reaches the limits

of its I/O at roughly 540 MB/s when published.

The second generation of MaCPepDB was built using Citus Data, extending

PostgreSQL, to distribute and utilize multiple servers. The new implementation

was tested first on our inhouse OpenStack with 6 virtual machines, each with

32 core and 128 GB RAM. The data was stored on SAN-storage with 32 SSDs

in RAID 6 connected using iSCSI over four parallel 10 GBit network, in theory

allowing a theoretical throughput of 5 GB/s.

A second test was performed on a database cluster assembled of five 10 year

old Dell servers, each with 24 to 32 cores and 128 GB RAM using two

consumer SSDs in RAID 0 as main storage for the database and a sixth more

recent server which was used as controller to store a few GB of metadata for

the database and distribute the incoming queries. In total the second cluster

matches the throughput of the first one.

Each cluster performed an in-silico digest of the complete UniProt KB to test

the write performance while the read performance was tested by querying

26,897 MS2 precursors from one of our standard measurements including the

two most common post translational modification (static carbamidomethylation

of Cysteine and variable oxidation of Methionine) which results in a total of

981,566 masses to query.

As Figure 1 shows, the OpenStack-solution needed 58.92 days to build the

database with an average of 42.19 inserted proteins per second. Surprisingly

the old Dell server cluster was much faster: it needed only 37.15 days with an

average of 70.27 proteins per second to complete the database build.

After the actual search engine’s peptide identification, often a strategy

containing the target-decoy-approach to estimate the false discovery rate

(FDR) is applied. While this strategy worked well for many years, new high-

resolution mass spectrometers with precursor and fragment mass errors in the

lower ppm respective mmu range exhibit problems. Firstly, the essential

decoys are no longer identified, as their theoretical mass spectra do not fit the

measured data. With this effect, the traditional FDR estimation is no longer

possible. Furthermore, almost all search engines perform well in distinguishing

which given peptide matches a spectrum best. But the differentiation, whether

the match of one spectrum is better than another spectrum’s match, is often

not possible when sing the algorithm’s scores. Many search engines have for

example a tendency to score heavier, longer peptides higher than lighter,

smaller sequences. Additionally, for analyses using very large search spaces,

like metaproteomics or open searches, the FDR overestimation yields less

identifications than default approaches.

To overcome these problems, we modified and applied a compute-intensive

strategy introduced in 2015 [2], which can now be applied using cloud

technology approaches. Instead of matching only the relatively few peptides in

the precursor tolerance to each respective spectrum, we additionally match

thousands of decoy peptides per spectrum, which are specifically created to

match the spectrum’s tolerance. This amount of peptide spectrum matches per

spectrum will allow us to calculate well-calibrated e-values per spectrum, which

are comparable between spectra and hopefully require no additional FDR

estimation. As a side-effect of our strategy we can allow searches with very

large databases – up to the complete UniProt KB – without exhibiting the FDR

problems, which currently lead to lower sensitivity.

While we are working on a way to calculate a score or p-value like metric for

the new spectrum identification, the basics of the new approach is

implemented using Comet as the actual search engine.

Further improvements of this approach will include the usage of predicted MS2

spectra for the scoring of peptide spectrum matches.

With the ability to extend the database even further, by simply adding more

servers to a cluster, it becomes possible to add additional peptide information

to MaCPepDB.
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Additional data

Fig. 1: Inserted proteins over time when building the database 

Fig. 2: Queried precursors (including PTMs) per second and returned records

The Dell servers do not only perform better in writing data, but also in reading.

While the Dell servers queried the 26,897 precursors in roughly 9 hours, the

OpenStack-solution was aborted after 65 hours as shown in Figure 2.

Despite the same throughput, there is a huge difference between both clusters

which could be explained by the used iSCSI volumes paired with a large MTU

of 9000 bytes resulting in mostly empty and delayed network packages when

reading small amounts of data.

Fig. 3: Peptide “ERFEMFR” with new 

proteome and taxonomy lists

For now lists of taxonomy and

proteome IDs are added to

each peptide entry which show

the respective peptide’s

species and proteome

information. This also includes

the list “Unique in taxonomies”

(Figure 3), which highlights the

taxonomies where a respective

peptide is only contained in one

protein, which e.g. makes it a

candidate for targeted

proteomics approaches.
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Fig. 4: Distribution of log(XScore) for the identifications of three spectra. Blue 

and green have both one outlier, which shows one good identification for the 

spectra, while blue generally yielded into much lower scores for all possible 

IDs than green. Orange has mediocre scores at all and no designated outlier.
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